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On the instability of the flow in an oscillating 
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The instability of a viscous fluid inside a rectangular tank oscillating about an axis 
parallel to the largest face of the tank is investigated in the linear regime. The flow is 
shown to be unstable to both longitudinal roll and standing wave instabilities. The 
particular cases of low and high oscillation frequencies are discussed in detail. The 
relationship between the roll instability and convective or centrifugal instabilities in 
unsteady boundary layers is discussed. The eigenvalue problems associated with the 
roll and standing wave instabilities are solved using Floquet theory and a combination 
of numerical and asymptotic methods. The results obtained are compared to the recent 
experimental investigation of Bolton & Maurer (1994) which indeed provided the 
stimulus for the present investigation. 

1. Introduction 
Our concern is with the instability of the unsteady flow of a viscous fluid inside a 

rectangular tank oscillating about an axis parallel to one face of the tank. The 
orientation of the axis of oscillation is shown in figure 1 of Bolton & Maurer (1994). 
An experimental investigation of the different regimes for the flow inside the tank is 
described in Bolton & Maurer (1994), hereafter referred to as BM). If the geometry of 
the tank is such that 

L J d ,  L,/d % 1 

then near the axis the basic flow is unidirectional (in the x* direction) and dependent 
only on y* and time. In fact the flow is an exact solution of the Navier-Stokes 
equations. The stability of the flow is therefore governed by a system of partial 
differential equations with coefficients periodic in time. We shall show that the linear 
instability problem is closely related to those for centrifugal and convective instabilities 
in time-periodic flows. Before discussing the results of BM we shall first briefly review 
the relevant details of the related flows mentioned above. 

The experimental and theoretical investigations of the centrifugal instability of a 
Stokes layer by Seminara & Hall (1976) showed that time-periodic flows can sustain 
instabilities not accessible to quasi-steady instability theories based on the in- 
stantaneous velocity profiles. Seminara & Hall (1976) found that a torsionally 
oscillating cylinder in a viscous fluid drives an unsteady boundary layer which is 
unstable to Taylor-vortex-like instabilities at high enough frequencies of oscillation. A 
more detailed experimental investigation of the problem by Park, Barenghi & Donnelly 
(1980) confirmed the secondary subharmonic destabilization of the most dangerous 
mode found by Seminara & Hall (1976). An approximate description of this 
subharmonic breakdown was later given by Hall (1 98 1). Subsequently it was shown by 
Hall (1984) and Papageorgiou (1987) that the instability mechanism found by 
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Seminara & Hall can occur in spatially localized positions in more complicated 
unsteady boundary-layer flows. 

The convection mode of instability of the unsteady thermal boundary layer in a 
semi-infinite mass of fluid adjacent to a time-periodically heated rigid wall was 
investigated theoretically by Hall (1985). In the latter paper it was shown that the 
convection problem for a fluid with Prandtl number equal to unity is identical to that 
governing the centrifugal instability problem for the flow adjacent to a rapidly rotating 
cylinder in a uniform stream. As yet only the severely truncated equations discussed by 
Hall have been solved and the results found suggest that the most dangerous mode is 
a subharmonic one. If that is the only unstable mode then Hall’s analysis suggests that 
the flow outside a rapidly rotating cylinder is stable since in that problem the polar 
angle B plays the role of time and solutions periodic in 8 with period 4n: are of no 
physical relevance. 

Another convection problem associated with time-periodic forcing is that discussed 
by Gresho & Sani (1970), who investigated the instability of a layer of fluid heated 
steadily from below in a time-periodic gravity field. It was found that the stability 
problem is governed by Mathieu’s equation and that the dominant instability is a 
subharmonic one. The problem discussed by Gresho & Sani is of considerable practical 
importance because of the presence of convection in a micro-gravity environment 
where vibrations cause the effective gravitational field to be oscillatory in time. 

The possible instability of time-periodic flows to travelling wave disturbances has by 
contrast not received much attention. One of the fundamental problems here concerns 
the linear instability of a Stokes layer on a transversely oscillating rigid plane wall to 
waves propagating in the flow direction. This problem was first investigated by 
Kerczek & Davis (1974) who found that, even though the instantaneous profiles can 
be highly inflexional and therefore unstable. the oscillatory flow between parallel plates 
is stable according to a Floquet approach. Later Hall (1978) showed that, even though 
the Floquet solutions of Kerczek & Davis were greatly dependent on the presence of 
a stationary wall, the Stokes layer on a wall oscillating in a viscous fluid is stable. 
However, the instantaneous velocity profiles associated with a Stokes layer can be 
unstable on the basis of a quasi-steady analysis. Such an approach is valid at large 
Reynolds numbers; however, the unstable solutions cannot be continued over a full 
period of oscillation to produce Floquet solutions. More recent work by Akhavan, 
Kamm & Shapiro (1991 a, b), based on full numerical simulations of the Navier-Stokes 
equations, suggests that transition to turbulence in Stokes layers can be attributed to 
higher-order instabilities associated with the primary instabilities of the instantaneously 
inviscidly unstable velocity profile of the basic state. 

We shall now discuss the main results found by BM in their experimental 
investigation of the flow in a flapping rectangular tank. A more detailed discussion of 
the results can be found in BM. 

In order to characterize the frequency of the flow BM introduced the parameter 
Q, = o d 2 / v ,  where w is the frequency of oscillation, v the kinematic viscosity and d the 
width of the tank. At a fixed value of the flapping angle a BM observed that at small 
enough values of Q, the flow was stable. When @ was increased a bifurcation to a weak 
roll state took place at a critical value of @. If this critical value of @ is denoted by Q,,, 
then BM showed that Q,cl is a monotonically decreasing function of a. At a second 
critical value of a, GC2, a strong roll state was found by BM and at sufficiently small 
values of a this mode exhibited hysteresis. At higher values of d> wavy modes were 
observed experimentally though BM suggest that these modes are dependent on the 
roll wavelength, which is quantized by the vertical length of the container. At very high 
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values of @ a turbulent flow superimposed on some residual roll structure was 
observed in the experiments. The analysis in this paper will focus on the origin of the 
strong vortex state found experimentally ; however, our results will also suggest a likely 
candidate for a mode responsible for the onset of the wavy states. 

In the following section we shall formulate the linear instability problem for the 
unidirectional flow in an infinitely long flapping tank. The equations we derive govern 
the linear instability of the flow to disturbances periodic in the x* and z* directions. In 
$ 3  these equations are discussed for roll modes which are taken to be independent of 
x*. The particular cases of large and small @ are discussed in 93 whilst in 94 numerical 
results for @ of O(1) size are presented and our results compared to experimental 
observations. In Q 5 we discuss travelling wave disturbances which are independent of 
z*. Finally in 9.5 we draw some conclusions. 

2. Basic flow and the stability problem 
Consider the flow of a viscous fluid in the rectangular container defined by 

-L,  < X* < L,, - id  < y* <id ,  -L,  < Z* < L, (2.1) 

with respect to a Cartesian coordinate system (x*,y*,z*). The fluid is taken to be 
incompressible and the density and viscosity are denoted by p and v respectively. The 
fluid is set in motion by the oscillation of the container about the z* axis with angular 
velocity (0, 0, aw sin wt*). Following BM we define the frequency parameter @ by 

@ = wd2/v  (2.2) 

so that @ >> 1 corresponds to a situation where viscous effects are small whilst @ < 1 
corresponds to a viscous-dominated flow. We can suppose that the velocity and 
pressure of the fluid are scaled on awd and apd& respectively whilst dimensionless 
variables (x, y, z )  and t are defined by 

(2-3) (x, y, Z )  = d-'(x*, y*, z*), t = wt*, 

where t* denotes time. With respect to the coordinate system moving with the tank the 
Navier-Stokes equations take the form 

v - u  = 0, 

1 
@ 

u,+a(u.V)u--Au = -Vp+2asint 

where subscripts denote partial derivatives. 
The above equations must be solved subject to 

u = 0 on x = kL,/d,  y = ki, z = kL, /d .  

p = +a sin2 t (2 +y2)  -xy  cos t +@ 
If we write 

then (2.4) becomes 

and for convenience we now drop the A notation. 
11 F L M  26R 
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In order to make analytical progress we assume that L J d ,  L,/d are large so that we 
can drop the boundary conditions at x = +L,/d,  z = & L J d .  As in BM this enables us 
to look for a unidirectional flow of the form 

u = (U(y,t),O,O), u = w = 0, p = -2as in t rudy ,  

where - ( l / @ ) U y v + U t  = 2ycost,'l 

@ = O ,  y=+' - 2' 1 
The required solution is 

where 

u = { - yi + Q} eit +complex conjugate, (2.8) 

i sinh [(i@)iy] ' = 2sinh[(i@)i$]' 

(Note that u = U/awd in the notation of BM.) For large values of @ the function Q 
is exponentially small away from layers of depth O(@)-i near y = +f.  Thus for large 
@ we find that near y = f 

E = sin t - sin [t + (y-91 exp [ + (~cD); O, - $11. (2.10) 

For small values of @ the fluid responds in a quasi-steady manner to the forcing and 
we obtain 

At first sight it might appear that the flow in a tank rotating with constant angular 
velocity is then obtained from the above by setting t equal to zero. However, in the 
limit w --f 0 the parameter @ also tends to zero so that in the steady limit there is no flow 
in the tank. 

U =  A@J~ { 1 - ~ ~ Y ~ } c O S  t+ . . . . (2.1 1) 

We now perturb the basic flow given by (2.8) by writing 

u = (U, 0,O) + [ U(y, t )  exp i{Ax + kx} + complex conjugate] + . . . . (2.12) 

If we assume that IUI < 14 then we can linearize (2.6) to give the equation for the 
Fourier mode with wavenumbers (A,  k) : 

I iAU+ V ,  +ikW = 0, 
.9U+al/tl,  = -iAP+2aVsint, 

2 V  = - Pv-2aUsin t ,  

2 W =  -ikP. 

(2.13) 

Here the operator 2' is defined by 

B = - [a; - A2 - k2] @-' + iaAa+ a,. (2.14) 

Equations (2.13) must be solved subject to 

U = V = W = O ,  y=+ ' .  2 (2.15) 

Since u is a periodic function of time we anticipate that solutions of (2.13) and (2.15) 
may be found with 

(u, V, W, P) = ept(C, f, F?, F )  (2.16) 

where c, f, @ and P" are periodic with respect to t and the Floquet exponent p is 
complex and is a function of @, a, A,  k. The stability of the flow is then determined by 
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the sign of pT; if solutions of the form (2.16) exist with pr  > 0 then the flow is unstable. 
In the next section we discuss solutions of the eigenvalue problem for the case h = 0 
which, following BM, we refer to as ‘roll’ modes. In $ 5  we investigate the possibility 
of Tollmien-Schlichting wave instabilities. 

3. Roll modes of instability 

eliminate W and P to give the following coupled pair of equations for U and V :  
We shall now seek solutions of (2.13) and (2.15) with A = 0; it is then convenient to 

I 
I 

(a; - k2 - @ at) U = - a@ V{ Qy eit + Qy eCit}, 

( a i - k 2 - @ a , ) ( a ~ - k 2 )  V = -2a@k2Usint, 

U = V = V , = O ,  y = + f .  

It is of interest to note that (3.1) also governs the stability of a vertically oscillating 
Boussinesq fluid between parallel walls y = 2;. In that case the fluid has Prandtl 
number unity and the upper and lower walls have temperature proportional to &sin t 
respectively, whilst the fluid is subject to a gravitational field proportional to sin t. In 
that case the Rayleigh number for the flow is a2Q2 so that at O( 1) values of @ we should 
anticipate unstable solutions of (3.1) for CL = O(1). Before discussing the numerical 
solution of (3.1) for O(1) values of a and @ it is instructive for us to first consider the 
further limits @ + O  and @ + 00. 

3.1. The low-frequency large-angle limit 
In the low-frequency limit (3.1) reduces to 

(a;-kz-mt) u = -2a@ 

V,  (3 .2~)  

( a ~ - k 2 - @ a a , ) ( a ~ - k 2 )  V =  -2a@k2Usint, (3.26) 
u=  V = V y = 0 ,  y=+; .  (3 .2~)  

We now indicate how a WKB type of solution of the above equations can be found. 
If we set a = 0 then the equations for U and V decouple and it is easy to see that the 
flow is stable with decay rates of size l /@ on the t timescale. We anticipate that this 
decay will then be balanced by growth associated with the apparently destabilizing 
terms on the right-hand side of (3.2a, b). This is achieved if a@ - O(1) so that we write 

A 
a = -+... 

@ 

gdt} + . . . . The eigenvalue problem for the and let (U,  V )  = (U,(y), V,(y)) exp {@-l 

local growth rate c is then found to be given by 

(3.3) 

Thus t appears only as a parameter in the zeroth-order problem so we have an ordinary 
differential system to determine the eigenvalues g = u(k,A).  In fact by replacing 
V, sin t by V, we see that (3.3) is then equivalent to the BCnard problem for a fluid of 

I [d2-k2-g] Y U,, = -2AsintV,, 

[di - k2 - CT] [di - k2] V, = - 2AkZ sin t U,,, 

U, = v, = KY, y = ++. 

11-2 
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Prandtl number unity between the plate y = -$ at temperature unity and the plate 
y = + at zero temperature. However, the effective Rayleigh number is - 4A2 sin2 t so 
that the flow is stable and a must have a negative real part. This can be seen from (3.3) 
for large values of A by writing 

cr= a,A+ ..., u, = u,,+ ..., v, = KO+ .... (3.4) 

The eigenvalue problem for a,, then becomes 

gird; - k2] V, = 4k2 sin2 t V,, 1 
K = O ,  y = f i .  J (3.5) 

We notice here that the limit A + co is an inviscid one so that the eigenvalue problem 
is now associated with a second-order differential equation. In fact the eigenvalues of 
(3.5) are 

which means that the flow is inviscidly stable. Thus we have shown above that for 
@ p 1, a@ + 1 the disturbance has an imaginary growth rate of size O(a). 

The above discussion shows that no neutral disturbances exist for a@ = 0(1), 
@ < 1. In order to obtain neutral disturbances we must increase a until sufficient 
exponential growth takes place near the times when sint = 0 to balance the 
exponential decay associated with viscous effects at other times. The exponential 
growth takes place in O(@) time intervals surrounding the times when sint = 0; this 
means that in these intervals the disturbance grows by an amount of order exp (aC@’j 
for some constant C. Viscous effects on the other hand lead to decay by factors of size 
exp [($z)”’D] for some D. Thus the decay rate decreases with k if a and @ are held 
fixed. However, as we will see later, when k increases to O(@j-f viscous effects in the 
bulk of the flow also come into play and a minimum decay rate is achieved. We 
therefore seek a solution of (3.2) for the small-@ case with 

B = a@, k = K@& (3.7a, b)  

held fixed. Note here that the scaling a - @-? enables viscous effects to enter the 
stability problem at leading order. 

u,, = & 2ik(n2x2 + k2j-i sin t, n = 1,2,3, . . . , (3 4 

11 

We then expand U and V in the form 

with U, = V, = r1 = 0. 
The systems to determine go, a2 are then found to be 

a,, U,, = 2 sin t V, B, a,, V, = -2 sin tUo B; (3.9) 

The consistency of (3.9) requires 

a; = - 4 sin’ tB2 

so that g,, is purely imaginary and then (3.10) has a 

1 (3.10) 
CT,, U2 = 2sintV, B-cr, U,,, 

IT,, V, = - 2 ~ i n t U ~ B - a ~  &+a,, V,,,/K2. J 

(3.11) 

solution if 
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and the solution of this equation which vanishes at y = +f is 

V, = C(t)sinnn(y+i), (3.12) 

with a2/cro = -n2n2/K2, n = 1,2,3, .. ., (3.13) 

and C(t) a function to be determined at higher order. Thus cr2 is also purely imaginary 
and indeed cr3, c4, gb are also imaginary. The equations to determine g6 are found to 
be 

croU6-2BsintV, = -[cr,L/,+g,CI,+cr,U,+a,U,+(a6+K2)Uo] 

+2B[q,cos tI/,+q,sintV,], 

go V,+2BsintU6 = -[a2 V,+c3 I/,+g4 K t n ,  V , + ( g 6 + K 2 )  V,] 

+ K+[a0 V, + g2 v, + (T3 + iT4 &lYY, (3.14) 

where (3.15) 

If we eliminate U,, V, from (3.14) we obtain a differential equation for V,. The 
appropriate boundary conditions for V, are obtained from an investigation of the 
viscous wall layers which are required at y = ++. The ‘outer’ limits of the wall-layer 
solutions then provide the required conditions for V,. After a straightforward 
calculation we arrive at the conditions 

(3.16) 

If the equation for V, is to have a solution satisfying these conditions then the real part 
of cr6 is given by 

- 2n2n2$lsin tld 
K 2  

(3.17) - K 2 .  cr6r = 

The amplitude function C(t) is determined at higher order and is found to be singular 
at the instants when vanishes. In order to find the disturbance structure at such times 
we consider a small time interval near, for example, t = 0 and define 

T = P ’ t .  (3.18) 

This scaling is implied by (3.2a) which shows that the first and second terms in the 
brackets on the right-hand side of this equation are comparable whenever sin t - O(@). 
We then note that (3.2) may then be written in the form 

- 2B 
...} V,  (3.19 a) 

(3.19b) 

These equations may be solved using a WKB approach to take care of the time 
dependence and by noting that for small values of (y - ; )  we can ignore the third and 
fourth terms in the bracket on the right-hand side of (3.19a). In order to balance the 
time derivative with terms on the right-hand side of (3.19) we must take aT = O(@-i) 
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and the y-dependence of the disturbance then shrinks to a thin layer of thickness @; 
near y = i. In fact a similar layer exists near y = -; but the structure is similar to that 
at the upper wall. We define 6 = (j-i) @-; and thcn look for a solution of (3.19) near 
y = of the form 

T 

xexp[$/ (4(T)+@"(T)+ ...) dT]. (3.20) 

If we substitute the above expansions into (3.19) and equate terms of the powers in @: 
we obtain at zeroth order a pair of linear equations for U,,, V,. The consistency of these 
equations yields 

.ft = -4B2T(T+&) (3.21) 

so that we have an exponentially growing solution in 

- & < T < O .  

We assume that T is in this range and consider the root of (3.21) with 4 > 0. At next 
order we find that the linear equations for U,, V, obtained are consistent if 

dzV, 24  12K2( 
K2V,+- 

dt2 4 12T+IV,=O 
(3.22) 

This equation is then solved subject to V, = 0, 6 = 0 and such that V, + 0, 6- - co. 
This enables us to express V, in terms of solutions of Airy's equation and the quantity 
J1 can then be expressed in terms of the zeros of A,.  The solution (3.22) fails when 
T = 0, T = -A and WKB turning point layers (with respect to t )  are needed to connect 
(3.8) and (3.22). Across these layers the two oscillating solutions (3.8) with cr,, = 
f 2iBsin t connect with the exponentially decaying growing solutions (3.20) with 
J ,  = f2B[- T]t(T+&)t. A periodic solution is obtained by choosing B such that 
the exponential growth in --A < T < 0 cancels the exponential decay associated with 
g6 in (3.8). We note here that the particular form of the time dependence of (3.9) 
enables us to consider only the interval 0 < t < n. If we then consider the least- 
decaying solution (3.17) with n = 1 we find that the smallest value of B that leads to 
a neutral solution of (3.9) for @ 4 1 satisfies 

0 

~ ~ l s i n r l ~ d t + K 2 n  = 2B s, [-T(T+&)fdT. 
K2 u 

(3.23) 

The above equation can then be solved for & (implicitly assumed to be positive in the 
derivation of (3.23)) as a function of K. Figure 1 shows B as a function of K ;  we see 
that B - K F ,  B - K4, for small and large K respectively and that B attains a minimum 
at some intermediate value of K. 

If the integral on the left-hand side of (3.23) is integrated numerically we find that 
the minimum occurs when 

B = 73630, K = 7.99. (3.24a, b) 

Thus the most dangerous mode for @ 4 1 has rn given by 

CI = 73630@-y+ .... (3.25) 

We postpone further discussion of (3.25) until the next section where we discuss the 
numerical solution of the eigenvalue problem for Q, = O(1). 
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I 
3 11 

K 

FIGURE 1. B as a function of K.  

3.2. The high-frequency limit 
For large values of the frequency parameter @ the function Q(y), appearing in the 
stability equations (3.1) develops boundary layers of thickness @T at y = &+ and is 
exponentially small elsewhere. It follows that any instability must be localized in these 
layers so for definiteness we focus on the layer at y = -; and define 

7 = &(y+;). (3.26) 

The dominant terms on the right- and left-hand sides of (3.1) then balance for 7 = O( 1) 
if 

with k N O(@. Hence we must take a N @-: and write 

U-aV@i, V - a U  

...) k = f&+ '.., B 
@z 

a=,+ 

and the zeroth-order approximation to (3.1) in the lower wall layer can be written in 
the form 

(a: - ,P - a,) u = V{[(i - 1)/2/21 ei'v+it +complex conjugate}, 

(a i - r2 ' -a , )@~-fz )  V = -2Bf2sintU, 

U = V = V = O ,  7 q = o ,  u,v+o, r+cQ. 
(3.27) I 

Solutions of this system of the form 

(U ,  V )  = efit(0((9, Q, 47,t))  

can be found and the Floquet exponent ,u is then a function of B and f .  Neutral 
solutions then correspond to p, = 0 and the corresponding values of f ,  B are the 
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neutral values of the neutral wavenumber and angular displacement. In fact (3.27) is 
quite similar to the eigenvalue problem solved by Seminara & Hall (1976). The latter 
authors were concerned with the stability of the flow around a torsionally oscillating 
cylinder. The eigenvalue value problem ,u = p(A, B) associated with (3.26) is identical 
to that governing the stability of a vertically oscillating Boussinesq fluid of Prandtl 
number unity subject to a time-periodic temperature heating at the wall. If the vertical 
oscillations are replaced by a steady gravitational field then we obtain the eigenvalue 
problem discussed by Hall (1985). It is of interest to note that in that case the growing 
modes correspond to subharmonic disturbances. 

A numerical investigation of the eigenvalue problem (3.27) showed that the only 
growing disturbances have pui = 0 so that the disturbed flow is synchronous with the 
basic flow. Our calculations showed that the minimum value of B is given by B = 2.9 
so that at high frequencies the boundary between stability and instability is given by 

a = 2.9&+. . . . (3.28) 

We postpone a comparison of the low and high frequency predictions found above to 
the numerical solutions of (3.1) until the next section. 

4. Numerical solutions of the eigenvalue problem for @ = O( 1) 

the form 
On the basis of Floquet theory we anticipate that solutions of (3.1) may be found in 

co 

(U ,  V )  = c { V,(Y), K(YN eint+pt (4.1) 
-02 

and the sign of pr,  the Floquet exponent, then determines the stability characteristics 
of the flow in question. We obtained values of p by substituting for (U,  V )  from (4.1) 
into (3.1) and solving the infinite set of coupled ordinary differential equations 
obtained by equating like powers of eit by a shooting procedure. Because of the 
symmetries of the basic state it is possible to show that the possible eigenfunctions 
(U,(y), V,(y)) are either odd or even functions of y .  This result was used to reduce the 
interval over which these functions must be calculated to [O,:]. However, note that all 
the results we obtained correspond to even modes in y and the corresponding Floquet 
exponent was found to be purely real. The latter result means that the disturbances are 
synchronous with the basic state; we note here that BM found no experimental 
evidence of subharmonic instabilities. Finally, before presenting our results we note 
that the number of Fourier terms used in the truncated form of (4.1) and the number 
of grid points in the Runge-Kutta integration scheme were varied until convergence 
was achieved. The results given here correspond to a RungeKutta step length and 
32 Fourier modes. 

In figure 2 we show a sequence of neutral curves in the (k, @)-plane for several values 
of a. We see that there is a minimum value of di on each neutral curve, and above these 
curves exponentially growing modes exist. If a: is varied we can compute the ( E , @ ) -  

locus of the most dangerous mode. This curve is shown in figure 3 and is labelled T1. 
In this figure we also show some of the experimental results of BM. A detailed 
explanation of the experimental results shown in figure 2 can be found in the 
accompanying paper BM. 

It appears that the theoretical curve T1 predicts the onset of the strong roll cells 
associated with 11. Despite an exhaustive search we could not find any amplifying 
modes corresponding to the weak roll onset observed experimentally. We note here 
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1 2 3 4 5 6 7 8 9  
k 

FIGURE 2. The neutral curves associated with (3.1) for a = 1.1, 1.25, 1.5, 2, 3, 4, 5, 6. 
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FIGURE 3. The experimental results of BM and the theoretical neutral curve (Tl). For an explanation 
of the symbols used see the text of this paper and BM. The low- and high-frequency predictions are 
denoted by A l ,  A2. 

that no particular time dependence of the perturbation was imposed in our calculations 
so that if subharmonic or superharmonic modes were unstable they would have been 
captured by the numerical scheme. We speculate then that the curve I of BM is 
associated with end effects in the experiment; certainly the fact that BM state that the 
roll amplitude does not increase significantly until 11 is crossed would tend to support 
this conclusion. 
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FIGURE 4. The experimental results of BM and the theoretical neutral curve (2-1). For an 
explanation of the symbols used see the text of this paper and BM. 

In figure 4 we compare the critical wavenumbers of our theoretical predictions with 
the observations of BM. We see that the onset of the strong roll state again correlates 
well with the theoretical work. 

Finally we note that the most dangerous modes predicted by the asymptotic theories 
for @ 9 1, @ < 1 are denoted by the curves A1 and A2 respectively in figure 3. We see 
that the high-frequency prediction agrees well with the finite-@ calculation whilst the 
small-@ prediction is not particularly accurate at the largest value of a used. However 
since the latter theory is based on a >> 1 and we have computed only for cz ,< 3 we 
presume that the difference is because the asymptotic regime has not yet been achieved. 
Indeed when z - 3 the curve TI has @ - 50 which means that the unsteady boundary 
layer has a thickness of about $2; thus the quasi-steady response of the basic state is 
not yet operational. 

In figure 5 (a-c) we show the first few Fourier modes of U,  V for the most dangerous 
mode at 01 = 1.1, 1.5, and 5. Note that these functions are even about y = 0 and that 
u,, u , - ~  are zero when n is an even integer. 

In order to see whether the wavy and turbulent states observed by BM are related 
to travelling wave disturbances we shall in the next section discuss the possible 
existence of shear flow instabilities. 

5. Shear flow instabilities 
Here we investigate the possibility that travelling wave disturbances are responsible 

for the onset of instability in the flow in a flapping rectangular tank. We restrict our 
attention lo two-dimensional waves and therefore set a, = W = 0 in (2.13). If the 
pressure is eliminated from the x and y momentum equations we find that V satisfies 

where we have defined the Reynolds number R by 

R = a@. 
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FIGURE 5. The eigenfunctions of the most dangerous modes for (a) a = 1.1, (b)  1.5 and (c) 5. 
Note that u, and L' ,&+~ are zero when n is even. 

We see that the terms proportional to sin t in (2.13) do not contribute to (5.1); which 
is therefore the generalization of the Orr-Sommerfeld equation to an unsteady parallel 

Equation (5.1) may be solved using the approach of Hall (1978) who used Floquet 
theory to convert the same equation for a Stokes-layer mean flow into an infinite 
sequence of coupled Orr-Sommerfeld equations. Here we shall restrict our attention to 
solutions of (5.1) for small and large values of the frequency parameter @. 

In the high-frequency limit we recall that lk is given by (2.10) for ( y + 3  = U(@). A 

flow u = G(y,  t). 
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similar asymptotic form applied in the upper boundary layer so that any instability will 
be localized near y = 5;. In fact u given by (2.10) is exactly the Stokes-layer velocity 
profile for the case when the flow is driven by an oscillatory presser gradient. Hence if 
we define 7 = &(y+;)  and let 

then (5.1) reduces to 
= &i, R = &i 

with 

which is to be solved subject to 

V =  < = o ,  y = o , C o .  (5.3) 

The partial differential system (5.2)-(5.3) is identical to that governing the instability 
of a Stokes layer to Tollmien-Schlichting waves; see Kerczek & Davis (1974), Hall 
(1 978). 

Thus for k = 0 the stability of the flow in a rectangular tank flapping at high 
frequencies is governed by the equations that determine the stability of a Stokes layer. 
The Floquet analysis of (2.14) given by Hall (1978) suggests that a Stokes layer is 
stable; on the other hand the quasi-steady approaches of Kerczek & Davis (1974) show 
that instantaneous profiles can be highly unstable because of their inflexional nature. 
The results of these different approaches can be reconciled by noting that the quasi- 
steady solutions cannot be connected to the Floquet solutions by extending them over 
a whole period. Nevertheless the results of the quasi-steady calculations are consistent 
with experimental observations and suggest instability will occur for part of the period 
whenever I? is greater than about 200. This suggests that at high frequencies localized 
shear instabilities will occur when 

whilst roll modes occur when 
a > 200@-: 

a > 2.90-2. 

It follows that, in an experiment with @ fixed, transition will probably be caused by 
shear instabilities waves for small enough values of a. However, a must be less than 
about 0.05 for the shear instabilities wave to become dominant; this regime was not 
investigated experimentally so it is not surprising that the asymptotic prediction given 
above is off the scale of figure 2. 

Now let us turn to the low-frequency limit cP + 0;  in this limit ais given by (2.1 1) and 
(5.1) may be written in the form 

- - 
(5.5) 

Equation (5.4) is to be solved subject to the conditions that V, should vanish at 
y = k;. The slow time variation of the basic state can be taken care of for the 
disturbance by a WKB approach; we therefore expand V in the form 

where u = &v{ 1 -4y2j, R = 0R. 

V = exp [*-[ c(t)  dt] [ c ( y ,  t)  + @ <(y, t )  + . . .] 
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FIGURE 6. The neutral curves associated with (5.6) with t = 0 (lower curve) and the Floquet 
theory prediction. 

and c(t) is then determined by the instantaneous Orr-Sommerfeld eigenvalue problem 

" - v - v  0 - oy = o ,  y = O , l .  I 
Thus the effective Reynolds number associated with the velocity field a(y)  is ( R  cos t). 
In figure 6 we show the neutral curve h = h(kcos t )  which marks the boundary between 
locally growing and decaying solutions. Thus whenever t and R are such that lkcos tl 
is greater than its value on the neutral curve at a fixed h the solution is locally growing. 
We further note that figure 6 is the neutral curve for the shear instability of the flow 
in a channel rotating with a steady angular velocity. In addition it should be noted that 
all the eigenvalues we found had zero wave speed so that the instability wave 
corresponds to a standing wave instability. However large we choose R,  it will be the 
case that Ikcos tl is sufficiently small for the part of the cycle so that the disturbance 
is locally decaying. The integrated value of the growth rate over a cycle then determines 
the stability property of the flow according to Floquet theory. Note that it is sufficient 
for us to consider only half a period of the basic flow so that the neutral solutions based 
on Floquet theory are given by 

Irn { 1 ~ ( t )  dt] = 0, (5.7) 

where Im { } denotes the imaginary part of a complex quantity. In figure 6 we also show 
the neutral curve obtained by the imposition of this condition. We see that instability 
occurs for R > 3965 and unstable modes occur over a finite range of values of the 
wavenumber A. The fact that the band of unstable wavenumbers is finite is a direct 
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consequence of the fact that U has an in!exion point so that at any instant in time when 
cos t + 0 at sufficiently high values of R the instantaneous neutral problem has a mode 
with c, = 0. Finally we note that our calculations predict the onset of shear instabilities 
when 

a > 3965@-'. (5.8) 

The unstable region predicted by (5.8) is off the scale in figure 3 so it would appear that 
the wavy and turbulent regimes in BM are not associated with shear instabilities. 
However, it should be remembered that (5.8) is valid only for @ 4 1 ; at O(1) values of 
the frequency parameter the stability of the basic state can only be determined by 
solving (5.1) numerically. We do not pursue that calculation here since our asymptotic 
results suggest that shear instabilities are not important in the experimental range 
investigated by BM. Nevertheless the Floquet solutions of (5.1) are of some interest 
since we know that at small values of @ unstable solutions exist whilst at large @ 
equation (5.1) governs the instability of a Stokes layer. Since no unstable Floquet 
solutions have ever been obtained for the latter problem it will be of interest to 
determine where the small4 unstable solutions become stabilized at larger @. 

6. Conclusions 
Our investigation has shown that the flow in an oscillating fluid tank is susceptible 

to at least two types of instability. The first mode is the roll mode having cell 
boundaries parallel to the (x,y)-plane whilst the other instability, the wave mode, is 
periodic in the x-direction. Furthermore, in the low-frequency limit the wave mode is 
stationary so that the instability takes the form of rolls which are now parallel to the 
b,z)-plane. The onset of the strong mode observed by BM is explained by the most 
dangerous linear disturbance discussed in $4 of this paper. We suspect that the weak 
roll observed by BM is a manifestation of end effects in their apparatus and is therefore 
not accessible to a linear instability analysis. The roll modes we have discussed have a 
close relationship with centrifugal and convective instabilities in time-periodic 
boundary layers and it i s  of interest to determine the destabilizing mechanism in the 
present situation. In fact we see in (3.1) that the terms on the right-hand side of the V- 
equation, which are responsible for the instability, arise from the Coriolis terms in the 
Navier-Stokes equation written in the rotating frame. Thus the roll mode is produced 
by Coriolis effects. On the other hand the wave mode is associated with an inflexion- 
point instability in both the high- and low-frequency limits. More precisely the wave 
instability discussed in $ 5  at small values of @ is an inviscid instability associated with 
the inflexional velocity profile &I). Our calculations suggest that, at low frequencies, 
this mode does not play a significant role in the highly nonlinear stages investigated 
experimentally by BM. However, the wave instability might be more unstable at finite 
values of the frequency parameter. This possibility has not been investigated 
numerically but certainly the results of BM suggest this as a strong possibility. 
However, as pointed out to the author by Professor Bolton, the wavy mode might 
simply be an instability of the nonlinear rolls. At high frequencies the wave mode is a 
locally unstable Stokes-layer instability. BM do not give any results that suggest that 
this instability is present in their experiments. We note that this is a highly localized 
mode and so if it were present in the experiments it would almost certainly be detected. 

In addition to the higher-order linear roll mode and travelling wave disturbances 
there are other candidates for the secondary and tertiary instabilities observed in the 
experiments. We refer to the inviscid modes induced by finite-amplitude vortices in 
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boundary-layer flows. These modes, which were discussed by Hall & Horseman (1991), 
arise when a finite-amplitude vortex modifies the underlying boundary layer so as to 
make it unstable to Rayleigh waves. The secondary instability in that problem tends 
to be created at particular spanwise locations but there is no suggestion that this type 
of localization occurs in the flapping tank problem. 
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